China Standard 37100-04342 for CHINAMFG Tacoma 07-14 Propshaft Tail Shaft Drive Shaft Manufacturer

Product Description

As a professional manufacturer for propeller shaft, we have +800 items for all kinds of car, main suitable
for AMERICA & EUROPE market.

 

Our advantage:

 

1. Full range of products

2. MOQ qty: 5pcs/items

3. Delivery on time

4: Warranty: 1 YEAR

5. Develope new items: FREE

 

OEM NO. 65-5012 37100-5712 936-724
Application for CZPT Tacoma 07-14
Material SS430/45# steel 
Balancing Standrad G16, 3200rpm
Warranty One Year

For some items, we have stock, small order (+3000USD) is welcome.

 

The following items are some of propeller shafts for Toyota, If you need more information, pls contact us for ASAP.
 

Propeller Shaft for TOYOTA

  OEM

     Application         

OEM

Application

37302-20040 for TOYOTA 37110-65710 for CZPT Land Cruiser 77-80
37120-0K030 for TOYOTA 37110-65710 for CZPT Land Cruiser 81-85 
37120-30420 for TOYOTA 37140-60170 for CZPT Land Cruiser 85-87
37140-6571 for TOYOTA 37140-65710 for CZPT Land Cruiser 88-90
37140-35050 for TOYOTA 37140-6 0571 for CZPT Land Cruiser 90-06
37140-60480 for CZPT 4Runner 03-09 37140-60540 for CZPT Land Cruiser 90-07
37110-6A440 for CZPT 4Runner 03-09 37110-60450 for CZPT Land Cruiser 90-92
37140-60380 for CZPT 4Runner 10-18 37110-6571 for CZPT Land Cruiser 90-99
37140-35060 for CZPT 4Runner 88-95 37140-65710 for CZPT Land Cruiser 90-99
65-9919 for CZPT 4Runner 89-95 37110-60460 for CZPT Land Cruiser 91-97
37140-35090 for CZPT 4Runner 89-95 37110-60520 for CZPT Land Cruiser 92-97
37140-35071 for CZPT 4Runner 90-92 37110-6A620 for CZPT Land Cruiser 98-07
37140-35130 for CZPT 4Runner 96-00 37110-6A250 for CZPT Land Cruiser 99-00
936-711 for CZPT 4Runner 96-02 37110-6A310 for CZPT Land Crusier
37110-6571 for CZPT 4Runner 96-20 37110-6A610 for CZPT Land Crusier 98-02
37110-3D300 for CZPT 4Runner 96-20 65-9375 for CZPT Pickup 79-83
37110-3D060 for CZPT 4Runner 97-02 37140-35013 for CZPT Pickup 80-83
37140-35190 for CZPT 4Runner 99-02 65-9376 for CZPT Pickup 84-87
37120-30390 for CZPT Crown 65-9842 for CZPT Previa 91-97
37100-48571 for CZPT Highlander 01-07 37100-42060 for CZPT RAV4 01-05
37100-48030 for CZPT Highlander 08-14 37100-42090 for CZPT RAV4 06-16
37110-60A20 for CZPT Hilux 37110-34120 for CZPT Sequoia 07
37140-0K571 for CZPT Hilux 37100-45571 for CZPT Sienna 04-10
37100-0K181 for CZPT Hilux 37100-45571 for CZPT SIENNA 2011-2018
37140-0K030 for CZPT Hilux 05-11 936-728 for CZPT Tacoma 05-15
37100-0K091 for CZPT Hilux 05-15 37100-5712 for CZPT Tacoma 07-14
37100-0K081 for CZPT Hilux 05-15 936-708 for CZPT Tacoma 2.7L 99-04
37100-0K480 for CZPT Hilux 2571 37100-35750 for CZPT Tacoma 2004
37140-35030 for CZPT Hilux 93-95 37100-5712 for CZPT Tacoma 2011-2015
37100-0K030 for CZPT Hilux 05- 936-738 for CZPT Tacoma 4.0L 05-15
37110-60330 for CZPT HJ60 82-84 37100-3D240 for CZPT Tacoma 95-04
371002A190 for CZPT JZX100 96-00 37140-35180 for CZPT Tacoma 95-04
37140-60121 for CZPT Land Cruiser 37100-35820 for CZPT Tacoma 95-99
37140-65710 for CZPT Land Cruiser 37100-3D250 for CZPT Tacoma 98-04
37140-65710 for CZPT Land Cruiser 37100-3D260 for CZPT Tacoma 99-04
37140-60320 for CZPT Land Cruiser 936-717 for CZPT Tundra 04
37140-60330 for CZPT Land Cruiser 37100-34130 for CZPT Tundra 05-06
37140-6571 for CZPT Land Cruiser 65-9257 for CZPT Tundra 2001-2004
37140-60430 for CZPT Land Cruiser 37100-34120 for CZPT Tundra 4.7L 05-06
37140-60450 for CZPT Land Cruiser 37110-6A430 for CZPT Land Cruiser 00-02
37140-6A610 for CZPT Land Cruiser 37140-6571 for CZPT Land Cruiser 02-09
37140-60080 for CZPT Land Cruiser 37110-60A50 for CZPT Land Cruiser 07
37110-60620 for CZPT Land Cruiser  37140-60590 for CZPT Land Cruiser 08-15
37110-6A260 for CZPT Land Cruiser  37140-60090 for CZPT Land Cruiser 74-80

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1 Year
Condition: New
Color: Black
Certification: ISO, IATF
Type: Propeller Shaft/Drive Shaft
Application Brand: Toyota
Samples:
US$ 300/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

pto shaft

How do drive shafts handle variations in speed and torque during operation?

Drive shafts are designed to handle variations in speed and torque during operation by employing specific mechanisms and configurations. These mechanisms allow the drive shafts to accommodate the changing demands of power transmission while maintaining smooth and efficient operation. Here’s a detailed explanation of how drive shafts handle variations in speed and torque:

1. Flexible Couplings:

Drive shafts often incorporate flexible couplings, such as universal joints (U-joints) or constant velocity (CV) joints, to handle variations in speed and torque. These couplings provide flexibility and allow the drive shaft to transmit power even when the driving and driven components are not perfectly aligned. U-joints consist of two yokes connected by a cross-shaped bearing, allowing for angular movement between the drive shaft sections. This flexibility accommodates variations in speed and torque and compensates for misalignment. CV joints, which are commonly used in automotive drive shafts, maintain a constant velocity of rotation while accommodating changing operating angles. These flexible couplings enable smooth power transmission and reduce vibrations and wear caused by speed and torque variations.

2. Slip Joints:

In some drive shaft designs, slip joints are incorporated to handle variations in length and accommodate changes in distance between the driving and driven components. A slip joint consists of an inner and outer tubular section with splines or a telescoping mechanism. As the drive shaft experiences changes in length due to suspension movement or other factors, the slip joint allows the shaft to extend or compress without affecting the power transmission. By allowing axial movement, slip joints help prevent binding or excessive stress on the drive shaft during variations in speed and torque, ensuring smooth operation.

3. Balancing:

Drive shafts undergo balancing procedures to optimize their performance and minimize vibrations caused by speed and torque variations. Imbalances in the drive shaft can lead to vibrations, which not only affect the comfort of vehicle occupants but also increase wear and tear on the shaft and its associated components. Balancing involves redistributing mass along the drive shaft to achieve even weight distribution, reducing vibrations and improving overall performance. Dynamic balancing, which typically involves adding or removing small weights, ensures that the drive shaft operates smoothly even under varying speeds and torque loads.

4. Material Selection and Design:

The selection of materials and the design of drive shafts play a crucial role in handling variations in speed and torque. Drive shafts are typically made from high-strength materials, such as steel or aluminum alloys, chosen for their ability to withstand the forces and stresses associated with varying operating conditions. The diameter and wall thickness of the drive shaft are also carefully determined to ensure sufficient strength and stiffness. Additionally, the design incorporates considerations for factors such as critical speed, torsional rigidity, and resonance avoidance, which help maintain stability and performance during speed and torque variations.

5. Lubrication:

Proper lubrication is essential for drive shafts to handle variations in speed and torque. Lubricating the joints, such as U-joints or CV joints, reduces friction and heat generated during operation, ensuring smooth movement and minimizing wear. Adequate lubrication also helps prevent the binding of components, allowing the drive shaft to accommodate speed and torque variations more effectively. Regular lubrication maintenance is necessary to ensure optimal performance and extend the lifespan of the drive shaft.

6. System Monitoring:

Monitoring the performance of the drive shaft system is important to identify any issues related to variations in speed and torque. Unusual vibrations, noises, or changes in power transmission can indicate potential problems with the drive shaft. Regular inspections and maintenance checks allow for the early detection and resolution of issues, helping to prevent further damage and ensure the drive shaft continues to handle speed and torque variations effectively.

In summary, drive shafts handle variations in speed and torque during operation through the use of flexible couplings, slip joints, balancing procedures, appropriate material selection and design, lubrication, and system monitoring. These mechanisms and practices allow the drive shaft to accommodate misalignment, changes in length, and variations in power demands, ensuring efficient power transmission, smooth operation, and reduced wear and tear in various applications.

pto shaft

How do drive shafts handle variations in load and vibration during operation?

Drive shafts are designed to handle variations in load and vibration during operation by employing various mechanisms and features. These mechanisms help ensure smooth power transmission, minimize vibrations, and maintain the structural integrity of the drive shaft. Here’s a detailed explanation of how drive shafts handle load and vibration variations:

1. Material Selection and Design:

Drive shafts are typically made from materials with high strength and stiffness, such as steel alloys or composite materials. The material selection and design take into account the anticipated loads and operating conditions of the application. By using appropriate materials and optimizing the design, drive shafts can withstand the expected variations in load without experiencing excessive deflection or deformation.

2. Torque Capacity:

Drive shafts are designed with a specific torque capacity that corresponds to the expected loads. The torque capacity takes into account factors such as the power output of the driving source and the torque requirements of the driven components. By selecting a drive shaft with sufficient torque capacity, variations in load can be accommodated without exceeding the drive shaft’s limits and risking failure or damage.

3. Dynamic Balancing:

During the manufacturing process, drive shafts can undergo dynamic balancing. Imbalances in the drive shaft can result in vibrations during operation. Through the balancing process, weights are strategically added or removed to ensure that the drive shaft spins evenly and minimizes vibrations. Dynamic balancing helps to mitigate the effects of load variations and reduces the potential for excessive vibrations in the drive shaft.

4. Dampers and Vibration Control:

Drive shafts can incorporate dampers or vibration control mechanisms to further minimize vibrations. These devices are typically designed to absorb or dissipate vibrations that may arise from load variations or other factors. Dampers can be in the form of torsional dampers, rubber isolators, or other vibration-absorbing elements strategically placed along the drive shaft. By managing and attenuating vibrations, drive shafts ensure smooth operation and enhance overall system performance.

5. CV Joints:

Constant Velocity (CV) joints are often used in drive shafts to accommodate variations in operating angles and to maintain a constant speed. CV joints allow the drive shaft to transmit power even when the driving and driven components are at different angles. By accommodating variations in operating angles, CV joints help minimize the impact of load variations and reduce potential vibrations that may arise from changes in the driveline geometry.

6. Lubrication and Maintenance:

Proper lubrication and regular maintenance are essential for drive shafts to handle load and vibration variations effectively. Lubrication helps reduce friction between moving parts, minimizing wear and heat generation. Regular maintenance, including inspection and lubrication of joints, ensures that the drive shaft remains in optimal condition, reducing the risk of failure or performance degradation due to load variations.

7. Structural Rigidity:

Drive shafts are designed to have sufficient structural rigidity to resist bending and torsional forces. This rigidity helps maintain the integrity of the drive shaft when subjected to load variations. By minimizing deflection and maintaining structural integrity, the drive shaft can effectively transmit power and handle variations in load without compromising performance or introducing excessive vibrations.

8. Control Systems and Feedback:

In some applications, drive shafts may be equipped with control systems that actively monitor and adjust parameters such as torque, speed, and vibration. These control systems use sensors and feedback mechanisms to detect variations in load or vibrations and make real-time adjustments to optimize performance. By actively managing load variations and vibrations, drive shafts can adapt to changing operating conditions and maintain smooth operation.

In summary, drive shafts handle variations in load and vibration during operation through careful material selection and design, torque capacity considerations, dynamic balancing, integration of dampers and vibration control mechanisms, utilization of CV joints, proper lubrication and maintenance, structural rigidity, and, in some cases, control systems and feedback mechanisms. By incorporating these features and mechanisms, drive shafts ensure reliable and efficient power transmission while minimizing the impact of load variations and vibrations on overall system performance.

pto shaft

Can you explain the different types of drive shafts and their specific applications?

Drive shafts come in various types, each designed to suit specific applications and requirements. The choice of drive shaft depends on factors such as the type of vehicle or equipment, power transmission needs, space limitations, and operating conditions. Here’s an explanation of the different types of drive shafts and their specific applications:

1. Solid Shaft:

A solid shaft, also known as a one-piece or solid-steel drive shaft, is a single, uninterrupted shaft that runs from the engine or power source to the driven components. It is a simple and robust design used in many applications. Solid shafts are commonly found in rear-wheel-drive vehicles, where they transmit power from the transmission to the rear axle. They are also used in industrial machinery, such as pumps, generators, and conveyors, where a straight and rigid power transmission is required.

2. Tubular Shaft:

Tubular shafts, also called hollow shafts, are drive shafts with a cylindrical tube-like structure. They are constructed with a hollow core and are typically lighter than solid shafts. Tubular shafts offer benefits such as reduced weight, improved torsional stiffness, and better damping of vibrations. They find applications in various vehicles, including cars, trucks, and motorcycles, as well as in industrial equipment and machinery. Tubular drive shafts are commonly used in front-wheel-drive vehicles, where they connect the transmission to the front wheels.

3. Constant Velocity (CV) Shaft:

Constant Velocity (CV) shafts are specifically designed to handle angular movement and maintain a constant velocity between the engine/transmission and the driven components. They incorporate CV joints at both ends, which allow flexibility and compensation for changes in angle. CV shafts are commonly used in front-wheel-drive and all-wheel-drive vehicles, as well as in off-road vehicles and certain heavy machinery. The CV joints enable smooth power transmission even when the wheels are turned or the suspension moves, reducing vibrations and improving overall performance.

4. Slip Joint Shaft:

Slip joint shafts, also known as telescopic shafts, consist of two or more tubular sections that can slide in and out of each other. This design allows for length adjustment, accommodating changes in distance between the engine/transmission and the driven components. Slip joint shafts are commonly used in vehicles with long wheelbases or adjustable suspension systems, such as some trucks, buses, and recreational vehicles. By providing flexibility in length, slip joint shafts ensure a constant power transfer, even when the vehicle chassis experiences movement or changes in suspension geometry.

5. Double Cardan Shaft:

A double Cardan shaft, also referred to as a double universal joint shaft, is a type of drive shaft that incorporates two universal joints. This configuration helps to reduce vibrations and minimize the operating angles of the joints, resulting in smoother power transmission. Double Cardan shafts are commonly used in heavy-duty applications, such as trucks, off-road vehicles, and agricultural machinery. They are particularly suitable for applications with high torque requirements and large operating angles, providing enhanced durability and performance.

6. Composite Shaft:

Composite shafts are made from composite materials such as carbon fiber or fiberglass, offering advantages such as reduced weight, improved strength, and resistance to corrosion. Composite drive shafts are increasingly being used in high-performance vehicles, sports cars, and racing applications, where weight reduction and enhanced power-to-weight ratio are critical. The composite construction allows for precise tuning of stiffness and damping characteristics, resulting in improved vehicle dynamics and drivetrain efficiency.

7. PTO Shaft:

Power Take-Off (PTO) shafts are specialized drive shafts used in agricultural machinery and certain industrial equipment. They are designed to transfer power from the engine or power source to various attachments, such as mowers, balers, or pumps. PTO shafts typically have a splined connection at one end to connect to the power source and a universal joint at the other end to accommodate angular movement. They are characterized by their ability to transmit high torque levels and their compatibility with a range of driven implements.

8. Marine Shaft:

Marine shafts, also known as propeller shafts or tail shafts, are specifically designed for marine vessels. They transmit power from the engine to the propeller, enabling propulsion. Marine shafts are usually long and operate in a harsh environment, exposed to water, corrosion, and high torque loads. They are typically made of stainless steel or other corrosion-resistant materials and are designed to withstand the challenging conditions encountered in marine applications.

It’simportant to note that the specific applications of drive shafts may vary depending on the vehicle or equipment manufacturer, as well as the specific design and engineering requirements. The examples provided above highlight common applications for each type of drive shaft, but there may be additional variations and specialized designs based on specific industry needs and technological advancements.

China Standard 37100-04342 for CHINAMFG Tacoma 07-14 Propshaft Tail Shaft Drive Shaft Manufacturer  China Standard 37100-04342 for CHINAMFG Tacoma 07-14 Propshaft Tail Shaft Drive Shaft Manufacturer
editor by CX 2024-04-26