Tag Archives: motor custom

China Professional Custom CNC Turning Steel Alloy Swing Motor Transmission Drive Pinion Gear Shaft

Product Description

Company Profile

 

 

Workshop

Detailed Photos

Product Description

 

Material Alloy Steel, Copper alloy(brass,silicon bronze,phosphor bronze,aluminum bronze,beryllium copper),Stainless Steel,Aluminum,Titanium, Magnesium, Superalloys,Molybdenum, Invar,,Zinc,Tungsten steel,incoloy,Nickel 200,Hastelloy, Inconel,Monel,ABS, PEEK,PTFE,PVC,Acetal.
Surface Treatment Zn-plating, Ni-plating, Cr-plating, Tin-plating, copper-plating, the wreath oxygen resin spraying, the heat disposing, hot-dip galvanizing, black oxide coating, painting, powdering, color zinc-plated, blue black zinc-plated, rust preventive oil, titanium alloy galvanized, silver plating, plastic, electroplating, anodizing etc.
Producing Equipment CNC machine,automatic lathe machine,CNC milling machine,lasering,tag grinding machine etc.
Drawing Format Pro/E, Auto CAD, CZPT Works, UG, CAD/CAM, PDF
Managing Returned Goods With quality problem or deviation from drawings
Warranty Replacement at all our cost for rejected products
Main Markets North America, South America, Eastern Europe , West Europe , North Europe, South Europe, Asia
How to order * You send us drawing or sample
* We carry through project assessment
* We make the sample and send it to you after you confirmed our design
* You confirm the sample then place an order and pay us 30% deposit
* We start producing
* When the goods is done, you pay us the balance after you confirmed pictures or tracking numbers.
* Trade is done, thank you!!

 

Quality Control

Packaging & Shipping

Customer Reviews

FAQ

Q1:What kind of information do you need for quotation?
A: You can provide 2D/3D drawing or send your sample to our factory, then we can make according to your sample.

Q2: Can we CZPT NDA?
A: Sure. We can CZPT the NDA before got your drawings.

Q3: Do you provide sample?
A: Yes, we can provide you sample before mass order.

Q4: How can you ensure the quality?
A: We have profesional QC,IQC, OQC to guarantee the quality.

Q5: Delivery time?
A: For samples genearlly need 25 days. Mass production: around 30~45 days after receipt of deposit (Accurate delivery time
depends on specific items and quantities)

Q6: How about the transportation?
A: You can choose any mode of transportation you want, sea delivery, air delivery or door to door express.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: Alloy Steel
Load: Drive Shaft
Stiffness & Flexibility: Stiffness / Rigid Axle
Journal Diameter Dimensional Accuracy: IT6-IT9
Axis Shape: Straight Shaft
Shaft Shape: Real Axis
Customization:
Available

|

Customized Request

pto shaft

Are there any limitations or disadvantages associated with drive shafts?

While drive shafts are widely used and offer several advantages, they also have certain limitations and disadvantages that should be considered. Here’s a detailed explanation of the limitations and disadvantages associated with drive shafts:

1. Length and Misalignment Constraints:

Drive shafts have a maximum practical length due to factors such as material strength, weight considerations, and the need to maintain rigidity and minimize vibrations. Longer drive shafts can be prone to increased bending and torsional deflection, leading to reduced efficiency and potential driveline vibrations. Additionally, drive shafts require proper alignment between the driving and driven components. Misalignment can cause increased wear, vibrations, and premature failure of the drive shaft or its associated components.

2. Limited Operating Angles:

Drive shafts, especially those using U-joints, have limitations on operating angles. U-joints are typically designed to operate within specific angular ranges, and operating beyond these limits can result in reduced efficiency, increased vibrations, and accelerated wear. In applications requiring large operating angles, constant velocity (CV) joints are often used to maintain a constant speed and accommodate greater angles. However, CV joints may introduce higher complexity and cost compared to U-joints.

3. Maintenance Requirements:

Drive shafts require regular maintenance to ensure optimal performance and reliability. This includes periodic inspection, lubrication of joints, and balancing if necessary. Failure to perform routine maintenance can lead to increased wear, vibrations, and potential driveline issues. Maintenance requirements should be considered in terms of time and resources when using drive shafts in various applications.

4. Noise and Vibration:

Drive shafts can generate noise and vibrations, especially at high speeds or when operating at certain resonant frequencies. Imbalances, misalignment, worn joints, or other factors can contribute to increased noise and vibrations. These vibrations may affect the comfort of vehicle occupants, contribute to component fatigue, and require additional measures such as dampers or vibration isolation systems to mitigate their effects.

5. Weight and Space Constraints:

Drive shafts add weight to the overall system, which can be a consideration in weight-sensitive applications, such as automotive or aerospace industries. Additionally, drive shafts require physical space for installation. In compact or tightly packaged equipment or vehicles, accommodating the necessary drive shaft length and clearances can be challenging, requiring careful design and integration considerations.

6. Cost Considerations:

Drive shafts, depending on their design, materials, and manufacturing processes, can involve significant costs. Customized or specialized drive shafts tailored to specific equipment requirements may incur higher expenses. Additionally, incorporating advanced joint configurations, such as CV joints, can add complexity and cost to the drive shaft system.

7. Inherent Power Loss:

Drive shafts transmit power from the driving source to the driven components, but they also introduce some inherent power loss due to friction, bending, and other factors. This power loss can reduce overall system efficiency, particularly in long drive shafts or applications with high torque requirements. It is important to consider power loss when determining the appropriate drive shaft design and specifications.

8. Limited Torque Capacity:

While drive shafts can handle a wide range of torque loads, there are limits to their torque capacity. Exceeding the maximum torque capacity of a drive shaft can lead to premature failure, resulting in downtime and potential damage to other driveline components. It is crucial to select a drive shaft with sufficient torque capacity for the intended application.

Despite these limitations and disadvantages, drive shafts remain a widely used and effective means of power transmission in various industries. Manufacturers continuously work to address these limitations through advancements in materials, design techniques, joint configurations, and balancing processes. By carefully considering the specific application requirements and potential drawbacks, engineers and designers can mitigate the limitations and maximize the benefits of drive shafts in their respective systems.

pto shaft

How do drive shafts enhance the performance of automobiles and trucks?

Drive shafts play a significant role in enhancing the performance of automobiles and trucks. They contribute to various aspects of vehicle performance, including power delivery, traction, handling, and overall efficiency. Here’s a detailed explanation of how drive shafts enhance the performance of automobiles and trucks:

1. Power Delivery: Drive shafts are responsible for transmitting power from the engine to the wheels, enabling the vehicle to move forward. By efficiently transferring power without significant losses, drive shafts ensure that the engine’s power is effectively utilized, resulting in improved acceleration and overall performance. Well-designed drive shafts with minimal power loss contribute to the vehicle’s ability to deliver power to the wheels efficiently.

2. Torque Transfer: Drive shafts facilitate the transfer of torque from the engine to the wheels. Torque is the rotational force that drives the vehicle forward. High-quality drive shafts with proper torque conversion capabilities ensure that the torque generated by the engine is effectively transmitted to the wheels. This enhances the vehicle’s ability to accelerate quickly, tow heavy loads, and climb steep gradients, thereby improving overall performance.

3. Traction and Stability: Drive shafts contribute to the traction and stability of automobiles and trucks. They transmit power to the wheels, allowing them to exert force on the road surface. This enables the vehicle to maintain traction, especially during acceleration or when driving on slippery or uneven terrain. The efficient power delivery through the drive shafts enhances the vehicle’s stability by ensuring balanced power distribution to all wheels, improving control and handling.

4. Handling and Maneuverability: Drive shafts have an impact on the handling and maneuverability of vehicles. They help establish a direct connection between the engine and the wheels, allowing for precise control and responsive handling. Well-designed drive shafts with minimal play or backlash contribute to a more direct and immediate response to driver inputs, enhancing the vehicle’s agility and maneuverability.

5. Weight Reduction: Drive shafts can contribute to weight reduction in automobiles and trucks. Lightweight drive shafts made from materials such as aluminum or carbon fiber-reinforced composites reduce the overall weight of the vehicle. The reduced weight improves the power-to-weight ratio, resulting in better acceleration, handling, and fuel efficiency. Additionally, lightweight drive shafts reduce the rotational mass, allowing the engine to rev up more quickly, further enhancing performance.

6. Mechanical Efficiency: Efficient drive shafts minimize energy losses during power transmission. By incorporating features such as high-quality bearings, low-friction seals, and optimized lubrication, drive shafts reduce friction and minimize power losses due to internal resistance. This enhances the mechanical efficiency of the drivetrain system, allowing more power to reach the wheels and improving overall vehicle performance.

7. Performance Upgrades: Drive shaft upgrades can be popular performance enhancements for enthusiasts. Upgraded drive shafts, such as those made from stronger materials or with enhanced torque capacity, can handle higher power outputs from modified engines. These upgrades allow for increased performance, such as improved acceleration, higher top speeds, and better overall driving dynamics.

8. Compatibility with Performance Modifications: Performance modifications, such as engine upgrades, increased power output, or changes to the drivetrain system, often require compatible drive shafts. Drive shafts designed to handle higher torque loads or adapt to modified drivetrain configurations ensure optimal performance and reliability. They enable the vehicle to effectively harness the increased power and torque, resulting in improved performance and responsiveness.

9. Durability and Reliability: Robust and well-maintained drive shafts contribute to the durability and reliability of automobiles and trucks. They are designed to withstand the stresses and loads associated with power transmission. High-quality materials, appropriate balancing, and regular maintenance help ensure that drive shafts operate smoothly, minimizing the risk of failures or performance issues. Reliable drive shafts enhance the overall performance by providing consistent power delivery and minimizing downtime.

10. Compatibility with Advanced Technologies: Drive shafts are evolving in tandem with advancements in vehicle technologies. They are increasingly being integrated with advanced systems such as hybrid powertrains, electric motors, and regenerative braking. Drive shafts designed to work seamlessly with these technologies maximize their efficiency and performance benefits, contributing to improved overall vehicle performance.

In summary, drive shafts enhance the performance of automobiles and trucks by optimizing power delivery, facilitating torque transfer, improving traction and stability, enhancing handling and maneuverability, reducing weight, increasing mechanical efficiency, enabling compatibility with performance upgrades and advanced technologies, and ensuring durability and reliability. They play a crucial role in ensuring efficient power transmission, responsive acceleration, precise handling, and overall improved performance of vehicles.

pto shaft

How do drive shafts contribute to transferring rotational power in various applications?

Drive shafts play a crucial role in transferring rotational power from the engine or power source to the wheels or driven components in various applications. Whether it’s in vehicles or machinery, drive shafts enable efficient power transmission and facilitate the functioning of different systems. Here’s a detailed explanation of how drive shafts contribute to transferring rotational power:

1. Vehicle Applications:

In vehicles, drive shafts are responsible for transmitting rotational power from the engine to the wheels, enabling the vehicle to move. The drive shaft connects the gearbox or transmission output shaft to the differential, which further distributes the power to the wheels. As the engine generates torque, it is transferred through the drive shaft to the wheels, propelling the vehicle forward. This power transfer allows the vehicle to accelerate, maintain speed, and overcome resistance, such as friction and inclines.

2. Machinery Applications:

In machinery, drive shafts are utilized to transfer rotational power from the engine or motor to various driven components. For example, in industrial machinery, drive shafts may be used to transmit power to pumps, generators, conveyors, or other mechanical systems. In agricultural machinery, drive shafts are commonly employed to connect the power source to equipment such as harvesters, balers, or irrigation systems. Drive shafts enable these machines to perform their intended functions by delivering rotational power to the necessary components.

3. Power Transmission:

Drive shafts are designed to transmit rotational power efficiently and reliably. They are capable of transferring substantial amounts of torque from the engine to the wheels or driven components. The torque generated by the engine is transmitted through the drive shaft without significant power losses. By maintaining a rigid connection between the engine and the driven components, drive shafts ensure that the power produced by the engine is effectively utilized in performing useful work.

4. Flexible Coupling:

One of the key functions of drive shafts is to provide a flexible coupling between the engine/transmission and the wheels or driven components. This flexibility allows the drive shaft to accommodate angular movement and compensate for misalignment between the engine and the driven system. In vehicles, as the suspension system moves or the wheels encounter uneven terrain, the drive shaft adjusts its length and angle to maintain a constant power transfer. This flexibility helps prevent excessive stress on the drivetrain components and ensures smooth power transmission.

5. Torque and Speed Transmission:

Drive shafts are responsible for transmitting both torque and rotational speed. Torque is the rotational force generated by the engine or power source, while rotational speed is the number of revolutions per minute (RPM). Drive shafts must be capable of handling the torque requirements of the application without excessive twisting or bending. Additionally, they need to maintain the desired rotational speed to ensure the proper functioning of the driven components. Proper design, material selection, and balancing of the drive shafts contribute to efficient torque and speed transmission.

6. Length and Balance:

The length and balance of drive shafts are critical factors in their performance. The length of the drive shaft is determined by the distance between the engine or power source and the driven components. It should be appropriately sized to avoid excessive vibrations or bending. Drive shafts are carefully balanced to minimize vibrations and rotational imbalances, which can affect the overall performance, comfort, and longevity of the drivetrain system.

7. Safety and Maintenance:

Drive shafts require proper safety measures and regular maintenance. In vehicles, drive shafts are often enclosed within a protective tube or housing to prevent contact with moving parts, reducing the risk of injury. Safety shields or guards may also be installed around exposed drive shafts in machinery to protect operators from potential hazards. Regular maintenance includes inspecting the drive shaft for wear, damage, or misalignment, and ensuring proper lubrication of the U-joints. These measures help prevent failures, ensure optimal performance, and extend the service life of the drive shaft.

In summary, drive shafts play a vital role in transferring rotational power in various applications. Whether in vehicles or machinery, drive shafts enable efficient power transmission from the engine or power source to the wheels or driven components. They provide a flexible coupling, handle torque and speed transmission, accommodate angular movement, and contribute to the safety and maintenance of the system. By effectively transferring rotational power, drive shafts facilitate the functioning and performance of vehicles and machinery in numerous industries.

China Professional Custom CNC Turning Steel Alloy Swing Motor Transmission Drive Pinion Gear Shaft  China Professional Custom CNC Turning Steel Alloy Swing Motor Transmission Drive Pinion Gear Shaft
editor by CX 2024-04-09

China Good quality Custom CNC Turning Steel Alloy Swing Motor Transmission Drive Pinion Gear Shaft

Product Description

Company Profile

 

 

Workshop

Detailed Photos

Product Description

 

Material Alloy Steel, Copper alloy(brass,silicon bronze,phosphor bronze,aluminum bronze,beryllium copper),Stainless Steel,Aluminum,Titanium, Magnesium, Superalloys,Molybdenum, Invar,,Zinc,Tungsten steel,incoloy,Nickel 200,Hastelloy, Inconel,Monel,ABS, PEEK,PTFE,PVC,Acetal.
Surface Treatment Zn-plating, Ni-plating, Cr-plating, Tin-plating, copper-plating, the wreath oxygen resin spraying, the heat disposing, hot-dip galvanizing, black oxide coating, painting, powdering, color zinc-plated, blue black zinc-plated, rust preventive oil, titanium alloy galvanized, silver plating, plastic, electroplating, anodizing etc.
Producing Equipment CNC machine,automatic lathe machine,CNC milling machine,lasering,tag grinding machine etc.
Drawing Format Pro/E, Auto CAD, CZPT Works, UG, CAD/CAM, PDF
Managing Returned Goods With quality problem or deviation from drawings
Warranty Replacement at all our cost for rejected products
Main Markets North America, South America, Eastern Europe , West Europe , North Europe, South Europe, Asia
How to order * You send us drawing or sample
* We carry through project assessment
* We make the sample and send it to you after you confirmed our design
* You confirm the sample then place an order and pay us 30% deposit
* We start producing
* When the goods is done, you pay us the balance after you confirmed pictures or tracking numbers.
* Trade is done, thank you!!

 

Quality Control

Packaging & Shipping

Customer Reviews

FAQ

Q1:What kind of information do you need for quotation?
A: You can provide 2D/3D drawing or send your sample to our factory, then we can make according to your sample.

Q2: Can we CZPT NDA?
A: Sure. We can CZPT the NDA before got your drawings.

Q3: Do you provide sample?
A: Yes, we can provide you sample before mass order.

Q4: How can you ensure the quality?
A: We have profesional QC,IQC, OQC to guarantee the quality.

Q5: Delivery time?
A: For samples genearlly need 25 days. Mass production: around 30~45 days after receipt of deposit (Accurate delivery time
depends on specific items and quantities)

Q6: How about the transportation?
A: You can choose any mode of transportation you want, sea delivery, air delivery or door to door express.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: Alloy Steel
Load: Drive Shaft
Stiffness & Flexibility: Stiffness / Rigid Axle
Journal Diameter Dimensional Accuracy: IT6-IT9
Axis Shape: Straight Shaft
Shaft Shape: Real Axis
Customization:
Available

|

Customized Request

pto shaft

Are there any limitations or disadvantages associated with drive shafts?

While drive shafts are widely used and offer several advantages, they also have certain limitations and disadvantages that should be considered. Here’s a detailed explanation of the limitations and disadvantages associated with drive shafts:

1. Length and Misalignment Constraints:

Drive shafts have a maximum practical length due to factors such as material strength, weight considerations, and the need to maintain rigidity and minimize vibrations. Longer drive shafts can be prone to increased bending and torsional deflection, leading to reduced efficiency and potential driveline vibrations. Additionally, drive shafts require proper alignment between the driving and driven components. Misalignment can cause increased wear, vibrations, and premature failure of the drive shaft or its associated components.

2. Limited Operating Angles:

Drive shafts, especially those using U-joints, have limitations on operating angles. U-joints are typically designed to operate within specific angular ranges, and operating beyond these limits can result in reduced efficiency, increased vibrations, and accelerated wear. In applications requiring large operating angles, constant velocity (CV) joints are often used to maintain a constant speed and accommodate greater angles. However, CV joints may introduce higher complexity and cost compared to U-joints.

3. Maintenance Requirements:

Drive shafts require regular maintenance to ensure optimal performance and reliability. This includes periodic inspection, lubrication of joints, and balancing if necessary. Failure to perform routine maintenance can lead to increased wear, vibrations, and potential driveline issues. Maintenance requirements should be considered in terms of time and resources when using drive shafts in various applications.

4. Noise and Vibration:

Drive shafts can generate noise and vibrations, especially at high speeds or when operating at certain resonant frequencies. Imbalances, misalignment, worn joints, or other factors can contribute to increased noise and vibrations. These vibrations may affect the comfort of vehicle occupants, contribute to component fatigue, and require additional measures such as dampers or vibration isolation systems to mitigate their effects.

5. Weight and Space Constraints:

Drive shafts add weight to the overall system, which can be a consideration in weight-sensitive applications, such as automotive or aerospace industries. Additionally, drive shafts require physical space for installation. In compact or tightly packaged equipment or vehicles, accommodating the necessary drive shaft length and clearances can be challenging, requiring careful design and integration considerations.

6. Cost Considerations:

Drive shafts, depending on their design, materials, and manufacturing processes, can involve significant costs. Customized or specialized drive shafts tailored to specific equipment requirements may incur higher expenses. Additionally, incorporating advanced joint configurations, such as CV joints, can add complexity and cost to the drive shaft system.

7. Inherent Power Loss:

Drive shafts transmit power from the driving source to the driven components, but they also introduce some inherent power loss due to friction, bending, and other factors. This power loss can reduce overall system efficiency, particularly in long drive shafts or applications with high torque requirements. It is important to consider power loss when determining the appropriate drive shaft design and specifications.

8. Limited Torque Capacity:

While drive shafts can handle a wide range of torque loads, there are limits to their torque capacity. Exceeding the maximum torque capacity of a drive shaft can lead to premature failure, resulting in downtime and potential damage to other driveline components. It is crucial to select a drive shaft with sufficient torque capacity for the intended application.

Despite these limitations and disadvantages, drive shafts remain a widely used and effective means of power transmission in various industries. Manufacturers continuously work to address these limitations through advancements in materials, design techniques, joint configurations, and balancing processes. By carefully considering the specific application requirements and potential drawbacks, engineers and designers can mitigate the limitations and maximize the benefits of drive shafts in their respective systems.

pto shaft

Can you provide real-world examples of vehicles and machinery that use drive shafts?

Drive shafts are widely used in various vehicles and machinery to transmit power from the engine or power source to the wheels or driven components. Here are some real-world examples of vehicles and machinery that utilize drive shafts:

1. Automobiles:

Drive shafts are commonly found in automobiles, especially those with rear-wheel drive or four-wheel drive systems. In these vehicles, the drive shaft transfers power from the transmission or transfer case to the rear differential or front differential, respectively. This allows the engine’s power to be distributed to the wheels, propelling the vehicle forward.

2. Trucks and Commercial Vehicles:

Drive shafts are essential components in trucks and commercial vehicles. They are used to transfer power from the transmission or transfer case to the rear axle or multiple axles in the case of heavy-duty trucks. Drive shafts in commercial vehicles are designed to handle higher torque loads and are often larger and more robust than those used in passenger cars.

3. Construction and Earthmoving Equipment:

Various types of construction and earthmoving equipment, such as excavators, loaders, bulldozers, and graders, rely on drive shafts for power transmission. These machines typically have complex drivetrain systems that use drive shafts to transfer power from the engine to the wheels or tracks, enabling them to perform heavy-duty tasks on construction sites or in mining operations.

4. Agricultural Machinery:

Agricultural machinery, including tractors, combines, and harvesters, utilize drive shafts to transmit power from the engine to the wheels or driven components. Drive shafts in agricultural machinery are often subjected to demanding conditions and may have additional features such as telescopic sections to accommodate variable distances between components.

5. Industrial Machinery:

Industrial machinery, such as manufacturing equipment, generators, pumps, and compressors, often incorporate drive shafts in their power transmission systems. These drive shafts transfer power from electric motors, engines, or other power sources to various driven components, enabling the machinery to perform specific tasks in industrial settings.

6. Marine Vessels:

In marine applications, drive shafts are commonly used to transmit power from the engine to the propeller in boats, ships, and other watercraft. Marine drive shafts are typically longer and designed to withstand the unique challenges posed by water environments, including corrosion resistance and appropriate sealing mechanisms.

7. Recreational Vehicles (RVs) and Motorhomes:

RVs and motorhomes often employ drive shafts as part of their drivetrain systems. These drive shafts transfer power from the transmission to the rear axle, allowing the vehicle to move and providing propulsion. Drive shafts in RVs may have additional features such as dampers or vibration-reducing components to enhance comfort during travel.

8. Off-Road and Racing Vehicles:

Off-road vehicles, such as SUVs, trucks, and all-terrain vehicles (ATVs), as well as racing vehicles, frequently utilize drive shafts. These drive shafts are designed to withstand the rigors of off-road conditions or high-performance racing, transmitting power efficiently to the wheels and ensuring optimal traction and performance.

9. Railway Rolling Stock:

In railway systems, drive shafts are employed in locomotives and some types of rolling stock. They transfer power from the locomotive’s engine to the wheels or propulsion system, enabling the train to move along the tracks. Railway drive shafts are typically much longer and may have additional features to accommodate the articulated or flexible nature of some train configurations.

10. Wind Turbines:

Large-scale wind turbines used for generating electricity incorporate drive shafts in their power transmission systems. The drive shafts transfer rotational energy from the turbine’s blades to the generator, where it is converted into electrical power. Drive shafts in wind turbines are designed to handle the significant torque and rotational forces generated by the wind.

These examples demonstrate the broad range of vehicles and machinery that rely on drive shafts for efficient power transmission and propulsion. Drive shafts are essential components in various industries, enabling the transfer of power from the source to the driven components, ultimately facilitating movement, operation, or the performance of specific tasks.

pto shaft

How do drive shafts handle variations in length and torque requirements?

Drive shafts are designed to handle variations in length and torque requirements in order to efficiently transmit rotational power. Here’s an explanation of how drive shafts address these variations:

Length Variations:

Drive shafts are available in different lengths to accommodate varying distances between the engine or power source and the driven components. They can be custom-made or purchased in standardized lengths, depending on the specific application. In situations where the distance between the engine and the driven components is longer, multiple drive shafts with appropriate couplings or universal joints can be used to bridge the gap. These additional drive shafts effectively extend the overall length of the power transmission system.

Additionally, some drive shafts are designed with telescopic sections. These sections can be extended or retracted, allowing for adjustments in length to accommodate different vehicle configurations or dynamic movements. Telescopic drive shafts are commonly used in applications where the distance between the engine and the driven components may change, such as in certain types of trucks, buses, and off-road vehicles.

Torque Requirements:

Drive shafts are engineered to handle varying torque requirements based on the power output of the engine or power source and the demands of the driven components. The torque transmitted through the drive shaft depends on factors such as the engine power, load conditions, and the resistance encountered by the driven components.

Manufacturers consider torque requirements when selecting the appropriate materials and dimensions for drive shafts. Drive shafts are typically made from high-strength materials, such as steel or aluminum alloys, to withstand the torque loads without deformation or failure. The diameter, wall thickness, and design of the drive shaft are carefully calculated to ensure it can handle the expected torque without excessive deflection or vibration.

In applications with high torque demands, such as heavy-duty trucks, industrial machinery, or performance vehicles, drive shafts may have additional reinforcements. These reinforcements can include thicker walls, cross-sectional shapes optimized for strength, or composite materials with superior torque-handling capabilities.

Furthermore, drive shafts often incorporate flexible joints, such as universal joints or constant velocity (CV) joints. These joints allow for angular misalignment and compensate for variations in the operating angles between the engine, transmission, and driven components. They also help absorb vibrations and shocks, reducing stress on the drive shaft and enhancing its torque-handling capacity.

In summary, drive shafts handle variations in length and torque requirements through customizable lengths, telescopic sections, appropriate materials and dimensions, and the inclusion of flexible joints. By carefully considering these factors, drive shafts can efficiently and reliably transmit power while accommodating the specific needs of different applications.

China Good quality Custom CNC Turning Steel Alloy Swing Motor Transmission Drive Pinion Gear Shaft  China Good quality Custom CNC Turning Steel Alloy Swing Motor Transmission Drive Pinion Gear Shaft
editor by CX 2024-02-04

China wholesaler Custom CNC Shaft 304 CNC Machined Long Shaft Motor Drive Shaft

Product Description

Product Description

 

Name Drive shaft
Material Steel
Shape Non-standard
Surface Grinding and polishing
Production cycle 20-60days
Length Any
Diameter Any
Tolerance ±0.001
Warranty 1 year
Serve OEM&ODM&Design service

 

Company Profile

HangZhou Xihu (West Lake) Dis. Machinery Manufacture Co., Ltd., located in HangZhou, “China’s ancient copper capital”, is a “national high-tech enterprise”. At the beginning of its establishment, the company adhering to the “to provide clients with high quality products, to provide timely service” concept, adhere to the “everything for the customer, make customer excellent supplier” for the mission.

Certifications

 

Q: Where is your company located ?
A: HangZhou ZheJiang .
Q: How could l get a sample?
A: Before we received the first order, please afford the sample cost and express fee. we will return the sample cost back
to you within your first order.
Q: Sample time?
A: Existing items: within 20-60 days.
Q: Whether you could make our brand on your products?
A: Yes. We can print your Logo on both the products and the packages if you can meet our MOQ.
Q: How to guarantee the quality of your products?
A: 1) stict detection during production. 2) Strict completely inspecion on products before shipment and intact product
packaging ensured.
Q: lf my drawings are safe?
A: Yes ,we can CZPT NDA.
 

Material: Carbon Steel
Load: Drive Shaft
Stiffness & Flexibility: Stiffness / Rigid Axle
Journal Diameter Dimensional Accuracy: OEM/ODM/Customized
Axis Shape: Straight Shaft
Shaft Shape: OEM/ODM/Customized
Customization:
Available

|

Customized Request

pto shaft

What factors should be considered when selecting the right drive shaft for an application?

When selecting the right drive shaft for an application, several factors need to be considered. The choice of drive shaft plays a crucial role in ensuring efficient and reliable power transmission. Here are the key factors to consider:

1. Power and Torque Requirements:

The power and torque requirements of the application are essential considerations. It is crucial to determine the maximum torque that the drive shaft will need to transmit without failure or excessive deflection. This includes evaluating the power output of the engine or power source, as well as the torque demands of the driven components. Selecting a drive shaft with the appropriate diameter, material strength, and design is essential to ensure it can handle the expected torque levels without compromising performance or safety.

2. Operating Speed:

The operating speed of the drive shaft is another critical factor. The rotational speed affects the dynamic behavior of the drive shaft, including the potential for vibration, resonance, and critical speed limitations. It is important to choose a drive shaft that can operate within the desired speed range without encountering excessive vibrations or compromising the structural integrity. Factors such as the material properties, balance, and critical speed analysis should be considered to ensure the drive shaft can handle the required operating speed effectively.

3. Length and Alignment:

The length and alignment requirements of the application must be considered when selecting a drive shaft. The distance between the engine or power source and the driven components determines the required length of the drive shaft. In situations where there are significant variations in length or operating angles, telescopic drive shafts or multiple drive shafts with appropriate couplings or universal joints may be necessary. Proper alignment of the drive shaft is crucial to minimize vibrations, reduce wear and tear, and ensure efficient power transmission.

4. Space Limitations:

The available space within the application is an important factor to consider. The drive shaft must fit within the allocated space without interfering with other components or structures. It is essential to consider the overall dimensions of the drive shaft, including length, diameter, and any additional components such as joints or couplings. In some cases, custom or compact drive shaft designs may be required to accommodate space limitations while maintaining adequate power transmission capabilities.

5. Environmental Conditions:

The environmental conditions in which the drive shaft will operate should be evaluated. Factors such as temperature, humidity, corrosive agents, and exposure to contaminants can impact the performance and lifespan of the drive shaft. It is important to select materials and coatings that can withstand the specific environmental conditions to prevent corrosion, degradation, or premature failure of the drive shaft. Special considerations may be necessary for applications exposed to extreme temperatures, water, chemicals, or abrasive substances.

6. Application Type and Industry:

The specific application type and industry requirements play a significant role in drive shaft selection. Different industries, such as automotive, aerospace, industrial machinery, agriculture, or marine, have unique demands that need to be addressed. Understanding the specific needs and operating conditions of the application is crucial in determining the appropriate drive shaft design, materials, and performance characteristics. Compliance with industry standards and regulations may also be a consideration in certain applications.

7. Maintenance and Serviceability:

The ease of maintenance and serviceability should be taken into account. Some drive shaft designs may require periodic inspection, lubrication, or replacement of components. Considering the accessibility of the drive shaft and associated maintenance requirements can help minimize downtime and ensure long-term reliability. Easy disassembly and reassembly of the drive shaft can also be beneficial for repair or component replacement.

By carefully considering these factors, one can select the right drive shaft for an application that meets the power transmission needs, operating conditions, and durability requirements, ultimately ensuring optimal performance and reliability.

pto shaft

Can drive shafts be customized for specific vehicle or equipment requirements?

Yes, drive shafts can be customized to meet specific vehicle or equipment requirements. Customization allows manufacturers to tailor the design, dimensions, materials, and other parameters of the drive shaft to ensure compatibility and optimal performance within a particular vehicle or equipment. Here’s a detailed explanation of how drive shafts can be customized:

1. Dimensional Customization:

Drive shafts can be customized to match the dimensional requirements of the vehicle or equipment. This includes adjusting the overall length, diameter, and spline configuration to ensure proper fitment and clearances within the specific application. By customizing the dimensions, the drive shaft can be seamlessly integrated into the driveline system without any interference or limitations.

2. Material Selection:

The choice of materials for drive shafts can be customized based on the specific requirements of the vehicle or equipment. Different materials, such as steel alloys, aluminum alloys, or specialized composites, can be selected to optimize strength, weight, and durability. The material selection can be tailored to meet the torque, speed, and operating conditions of the application, ensuring the drive shaft’s reliability and longevity.

3. Joint Configuration:

Drive shafts can be customized with different joint configurations to accommodate specific vehicle or equipment requirements. For example, universal joints (U-joints) may be suitable for applications with lower operating angles and moderate torque demands, while constant velocity (CV) joints are often used in applications requiring higher operating angles and smoother power transmission. The choice of joint configuration depends on factors such as operating angle, torque capacity, and desired performance characteristics.

4. Torque and Power Capacity:

Customization allows drive shafts to be designed with the appropriate torque and power capacity for the specific vehicle or equipment. Manufacturers can analyze the torque requirements, operating conditions, and safety margins of the application to determine the optimal torque rating and power capacity of the drive shaft. This ensures that the drive shaft can handle the required loads without experiencing premature failure or performance issues.

5. Balancing and Vibration Control:

Drive shafts can be customized with precision balancing and vibration control measures. Imbalances in the drive shaft can lead to vibrations, increased wear, and potential driveline issues. By employing dynamic balancing techniques during the manufacturing process, manufacturers can minimize vibrations and ensure smooth operation. Additionally, vibration dampers or isolation systems can be integrated into the drive shaft design to further mitigate vibrations and enhance overall system performance.

6. Integration and Mounting Considerations:

Customization of drive shafts takes into account the integration and mounting requirements of the specific vehicle or equipment. Manufacturers work closely with the vehicle or equipment designers to ensure that the drive shaft fits seamlessly into the driveline system. This includes adapting the mounting points, interfaces, and clearances to ensure proper alignment and installation of the drive shaft within the vehicle or equipment.

7. Collaboration and Feedback:

Manufacturers often collaborate with vehicle manufacturers, OEMs (Original Equipment Manufacturers), or end-users to gather feedback and incorporate their specific requirements into the drive shaft customization process. By actively seeking input and feedback, manufacturers can address specific needs, optimize performance, and ensure compatibility with the vehicle or equipment. This collaborative approach enhances the customization process and results in drive shafts that meet the exact requirements of the application.

8. Compliance with Standards:

Customized drive shafts can be designed to comply with relevant industry standards and regulations. Compliance with standards, such as ISO (International Organization for Standardization) or specific industry standards, ensures that the customized drive shafts meet quality, safety, and performance requirements. Adhering to these standards provides assurance that the drive shafts are compatible and can be seamlessly integrated into the specific vehicle or equipment.

In summary, drive shafts can be customized to meet specific vehicle or equipment requirements through dimensional customization, material selection, joint configuration, torque and power capacity optimization, balancing and vibration control, integration and mounting considerations, collaboration with stakeholders, and compliance with industry standards. Customization allows drive shafts to be precisely tailored to the needs of the application, ensuring compatibility, reliability, and optimal performance.

pto shaft

Are there variations in drive shaft designs for different types of machinery?

Yes, there are variations in drive shaft designs to cater to the specific requirements of different types of machinery. The design of a drive shaft is influenced by factors such as the application, power transmission needs, space limitations, operating conditions, and the type of driven components. Here’s an explanation of how drive shaft designs can vary for different types of machinery:

1. Automotive Applications:

In the automotive industry, drive shaft designs can vary depending on the vehicle’s configuration. Rear-wheel-drive vehicles typically use a single-piece or two-piece drive shaft, which connects the transmission or transfer case to the rear differential. Front-wheel-drive vehicles often use a different design, employing a drive shaft that combines with the constant velocity (CV) joints to transmit power to the front wheels. All-wheel-drive vehicles may have multiple drive shafts to distribute power to all wheels. The length, diameter, material, and joint types can differ based on the vehicle’s layout and torque requirements.

2. Industrial Machinery:

Drive shaft designs for industrial machinery depend on the specific application and power transmission requirements. In manufacturing machinery, such as conveyors, presses, and rotating equipment, drive shafts are designed to transfer power efficiently within the machine. They may incorporate flexible joints or use a splined or keyed connection to accommodate misalignment or allow for easy disassembly. The dimensions, materials, and reinforcement of the drive shaft are selected based on the torque, speed, and operating conditions of the machinery.

3. Agriculture and Farming:

Agricultural machinery, such as tractors, combines, and harvesters, often requires drive shafts that can handle high torque loads and varying operating angles. These drive shafts are designed to transmit power from the engine to attachments and implements, such as mowers, balers, tillers, and harvesters. They may incorporate telescopic sections to accommodate adjustable lengths, flexible joints to compensate for misalignment during operation, and protective shielding to prevent entanglement with crops or debris.

4. Construction and Heavy Equipment:

Construction and heavy equipment, including excavators, loaders, bulldozers, and cranes, require robust drive shaft designs capable of transmitting power in demanding conditions. These drive shafts often have larger diameters and thicker walls to handle high torque loads. They may incorporate universal joints or CV joints to accommodate operating angles and absorb shocks and vibrations. Drive shafts in this category may also have additional reinforcements to withstand the harsh environments and heavy-duty applications associated with construction and excavation.

5. Marine and Maritime Applications:

Drive shaft designs for marine applications are specifically engineered to withstand the corrosive effects of seawater and the high torque loads encountered in marine propulsion systems. Marine drive shafts are typically made from stainless steel or other corrosion-resistant materials. They may incorporate flexible couplings or dampening devices to reduce vibration and mitigate the effects of misalignment. The design of marine drive shafts also considers factors such as shaft length, diameter, and support bearings to ensure reliable power transmission in marine vessels.

6. Mining and Extraction Equipment:

In the mining industry, drive shafts are used in heavy machinery and equipment such as mining trucks, excavators, and drilling rigs. These drive shafts need to withstand extremely high torque loads and harsh operating conditions. Drive shaft designs for mining applications often feature larger diameters, thicker walls, and specialized materials such as alloy steel or composite materials. They may incorporate universal joints or CV joints to handle operating angles, and they are designed to be resistant to abrasion and wear.

These examples highlight the variations in drive shaft designs for different types of machinery. The design considerations take into account factors such as power requirements, operating conditions, space constraints, alignment needs, and the specific demands of the machinery or industry. By tailoring the drive shaft design to the unique requirements of each application, optimal power transmission efficiency and reliability can be achieved.

China wholesaler Custom CNC Shaft 304 CNC Machined Long Shaft Motor Drive Shaft  China wholesaler Custom CNC Shaft 304 CNC Machined Long Shaft Motor Drive Shaft
editor by CX 2023-11-06

China Best Sales Manufacturer Direct Yacht Motor Custom Cylindrical Gear Motor Shaft drive shaft yoke

Product Description

Product Description

Product Parameters

Item Spur Gear Axle Shaft
Material 4140,4340,40Cr,42Crmo,42Crmo4,20Cr,20CrMnti, 20Crmo,35Crmo
OEM NO Customize
Certification ISO/TS16949
Test Requirement Magnetic Powder Test, Hardness Test, Dimension Test
Color Paint , Natural Finish ,Machining All Around
Material Aluminum: 5000series(5052…)/6000series(6061…)/7000series(7075…)
Steel: Carbon Steel,Middle Steel,Steel Alloy,etc.
Stainess Steel: 303/304/316,etc.
Copper/Brass/Bronze/Red Copper,etc.
Plastic:ABS,PP,PC,Nylon,Delrin(POM),Bakelite,etc.
Size According to Customer’s drawing or samples
Process CNC machining,Turning,Milling,Stamping,Grinding,Welding,Wire Injection,Cutting,etc.
Tolerance ≥+/-0.03mm
Surface Treatment (Sandblast)&(Hard)&(Color)Anodizing,(Chrome,Nickel,Zinc…)Plating,Painting,Powder Coating,Polishing,Blackened,Hardened,Lasering,Engraving,etc.
File Formats ProE,SolidWorks,UG,CAD,PDF(IGS,X-T,STP,STL)
Sample Available
Packing Spline protect cover ,Wood box ,Waterproof membrane; Or per customers’ requirements.

 

Our Advantages

Why Choose US ???

 

 1. Equipment :

Our company boasts all necessary production equipment,
including Hydraulic press machines, Japanese CNC lathe (TAKISAWA), Korean gear hobbing machine (I SNT), gear shaping machine, machining center, CNC grinder, heat treatment line etc. 

 

 

2. Processing precision:

We are a professional gear & gear shafts manufacturer. Our gears are around 6-7 grade in mass production.

3. Company:

We have 90 employees, including 10 technical staffs. Covering an area of 20000 square meters.

4. Certification :

Oue company has passed ISO 14001 and TS16949

5.Sample service :

We provide free sample for confirmation and customer bears the freight charges

6.OEM service :

Having our own factory and professional technicians,we welcome OEM orders as well.We can design and produce the specific product you need according to your detail information

 

Cooperation Partner

Company Profile

Our Featured Products

 

 

 

Material: Alloy Steel
Load: Drive Shaft
Axis Shape: Straight Shaft
Appearance Shape: Round
Rotation: Cw
Yield: 5, 000PCS / Month
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

air-compressor

What is a driveshaft and how much does it cost to replace one?

Your vehicle is made up of many moving parts. Knowing each part is important because a damaged driveshaft can seriously damage other parts of the car. You may not know how important your driveshaft is, but it’s important to know if you want to fix your car. In this article, we’ll discuss what a driveshaft is, what its symptoms are, and how much it costs to replace a driveshaft.

Repair damaged driveshafts

A damaged driveshaft does not allow you to turn the wheels freely. It also exposes your vehicle to higher repair costs due to damaged driveshafts. If the drive shaft breaks while the car is in motion, it may cause a crash. Also, it can significantly affect the performance of the car. If you don’t fix the problem right away, you could risk more expensive repairs. If you suspect that the drive shaft is damaged, do the following.
First, make sure the drive shaft is protected from dust, moisture, and dust. A proper driveshaft cover will prevent grease from accumulating in the driveshaft, reducing the chance of further damage. The grease will also cushion the metal-to-metal contact in the constant velocity joints. For example, hitting a soft material is better than hitting a metal wall. A damaged prop shaft can not only cause difficult cornering, but it can also cause the vehicle to vibrate, which can further damage the rest of the drivetrain.
If the driveshaft is damaged, you can choose to fix it yourself or take it to a mechanic. Typically, driveshaft repairs cost around $200 to $300. Parts and labor may vary based on your vehicle type and type of repair. These parts can cost up to $600. However, if you don’t have a mechanical background, it’s better to leave it to a professional.
If you notice that one of the two drive shafts is worn, it’s time to repair it. Worn bushings and bearings can cause the drive shaft to vibrate unnecessarily, causing it to break and cause further damage. You can also check the center bearing if there is any play in the bearing. If these symptoms occur, it is best to take your car to a mechanic as soon as possible.
air-compressor

Learn about U-joints

While most vehicles have at least one type of U-joint, there are other types available. CV joints (also known as hot rod joints) are used in a variety of applications. The minor axis is shorter than the major axis on which the U-joint is located. In both cases, the U-joints are lubricated at the factory. During servicing, the drive shaft slip joint should be lubricated.
There are two main styles of U-joints, including forged and press fit. They are usually held in place by C-clamps. Some of these U-joints have knurls or grooves. When selecting the correct fitting, be sure to measure the entire fitting. To make sure you get the correct size, you can use the size chart or check the manual for your specific model.
In addition to lubrication, the condition of the U-joint should be checked regularly. Lubricate them regularly to avoid premature failure. If you hear a clicking sound when shifting gears, the u-joint space may be misaligned. In this case, the bearing may need to be serviced. If there is insufficient grease in the bearings, the universal joint may need to be replaced.
U-joint is an important part of the automobile transmission shaft. Without them, your car would have no wheeled suspension. Without them, your vehicle will have a rickety front end and a wobbly rear end. Because cars can’t drive on ultra-flat surfaces, they need flexible driveshafts. The U-joint compensates for this by allowing it to move up and down with the suspension.
A proper inspection will determine if your u-joints are loose or worn. It should be easy to pull them out. Make sure not to pull them all the way out. Also, the bearing caps should not move. Any signs of roughness or wear would indicate a need for a new UJ. Also, it is important to note that worn UJs cannot be repaired.

Symptoms of Driveshaft Failure

One of the most common problems associated with a faulty driveshaft is difficulty turning the wheels. This severely limits your overall control over the vehicle. Fortunately, there are several symptoms that could indicate that your driveshaft is failing. You should take immediate steps to determine the cause of the problem. One of the most common causes of driveshaft failure is a weak or faulty reverse gear. Other common causes of driveshaft damage include driving too hard, getting stuck in reverse gear and differential lock.
Another sign of a failed driveshaft is unusual noise while driving. These noises are usually the result of wear on the bushings and bearings that support the drive shaft. They can also cause your car to screech or scratch when switching from drive to idle. Depending on the speed, the noise may be accompanied by vibration. When this happens, it’s time to send your vehicle in for a driveshaft replacement.
One of the most common symptoms of driveshaft failure is noticeable jitter when accelerating. This could be a sign of a loose U-joint or worn center bearing. You should thoroughly inspect your car to determine the cause of these sounds and corresponding symptoms. A certified mechanic can help you determine the cause of the noise. A damaged propshaft can severely limit the drivability of the vehicle.
Regular inspection of the drive shaft can prevent serious damage. Depending on the damage, you can replace the driveshaft for anywhere from $500 to $1,000. Depending on the severity of the damage and the level of repair, the cost will depend on the number of parts that need to be replaced. Do not drive with a bad driveshaft as it can cause a serious crash. There are several ways to avoid this problem entirely.
The first symptom to look for is a worn U-joint. If the U-joint comes loose or moves too much when trying to turn the steering wheel, the driveshaft is faulty. If you see visible rust on the bearing cap seals, you can take your car to a mechanic for a thorough inspection. A worn u-joint can also indicate a problem with the transmission.
air-compressor

The cost of replacing the drive shaft

Depending on your state and service center, a driveshaft repair can cost as little as $300 or as high as $2,000, depending on the specifics of your car. Labor costs are usually around $70. Prices for the parts themselves range from $400 to $600. Labor costs also vary by model and vehicle make. Ultimately, the decision to repair or replace the driveshaft will depend on whether you need a quick car repair or a full car repair.
Some cars have two separate driveshafts. One goes to the front and the other goes to the back. If your car has four wheel drive, you will have two. If you’re replacing the axles of an all-wheel-drive car, you’ll need a special part for each axle. Choosing the wrong one can result in more expensive repairs. Before you start shopping, you should know exactly how much it will cost.
Depending on the type of vehicle you own, a driveshaft replacement will cost between PS250 and PS500. Luxury cars can cost as much as PS400. However, for safety and the overall performance of the car, replacing the driveshaft may be a necessary repair. The cost of replacing a driveshaft depends on how long your car has been on the road and how much wear and tear it has experienced. There are some symptoms that indicate a faulty drive shaft and you should take immediate action.
Repairs can be expensive, so it’s best to hire a mechanic with experience in the field. You’ll be spending hundreds of dollars a month, but you’ll have peace of mind knowing the job will be done right. Remember that you may want to ask a friend or family member to help you. Depending on the make and model of your car, replacing the driveshaft is more expensive than replacing the parts and doing it yourself.
If you suspect that your drive shaft is damaged, be sure to fix it as soon as possible. It is not advisable to drive a car with abnormal vibration and sound for a long time. Fortunately, there are some quick ways to fix the problem and avoid costly repairs later. If you’ve noticed the symptoms above, it’s worth getting the job done. There are many signs that your driveshaft may need service, including lack of power or difficulty moving the vehicle.

China Best Sales Manufacturer Direct Yacht Motor Custom Cylindrical Gear Motor Shaft   drive shaft yoke		China Best Sales Manufacturer Direct Yacht Motor Custom Cylindrical Gear Motor Shaft   drive shaft yoke
editor by CX 2023-05-26

China 2020 new big wheel 1200W 1500W 60V shaft drive motor electric 4 wheeler,4 wheel quad bike,farm atv custom drive shaft

Error:获取返回内容失败,
Your session has expired. Please reauthenticate.

air-compressor
hollow drive shaft

Hollow driveshafts have many benefits. They are light and reduce the overall weight of the vehicle. The largest manufacturer of these components in the world is CZPT. They also offer lightweight solutions for various applications, such as high-performance axles. CZPT driveshafts are manufactured using state-of-the-art technology. They offer excellent quality at competitive prices.
The inner diameter of the hollow shaft reduces the magnitude of the internal forces, thereby reducing the amount of torque transmitted. Unlike solid shafts, hollow shafts are getting stronger. The material inside the hollow shaft is slightly lighter, which further reduces its weight and overall torque. However, this also increases its drag at high speeds. This means that in many applications hollow driveshafts are not as efficient as solid driveshafts.
A conventional hollow drive shaft consists of a first rod 14 and a second rod 14 on both sides. The first rod is connected with the second rod, and the second rod extends in the rotation direction. The two rods are then friction welded to the central area of ​​the hollow shaft. The frictional heat generated during the relative rotation helps to connect the two parts. Hollow drive shafts can be used in internal combustion engines and environmentally-friendly vehicles.
The main advantage of a hollow driveshaft is weight reduction. The splines of the hollow drive shaft can be designed to be smaller than the outside diameter of the hollow shaft, which can significantly reduce weight. Hollow shafts are also less likely to jam compared to solid shafts. Hollow driveshafts are expected to eventually occupy the world market for automotive driveshafts. Its advantages include fuel efficiency and greater flexibility compared to solid prop shafts.

Cardan shaft

Cardan shafts are a popular choice in industrial machinery. They are used to transmit power from one machine to another and are available in a variety of sizes and shapes. They are available in a variety of materials, including steel, copper, and aluminum. If you plan to install one of these shafts, it is important to know the different types of Cardan shafts available. To find the best option, browse the catalog.
Telescopic or “Cardan” prop shafts, also known as U-joints, are ideal for efficient torque transfer between the drive and output system. They are efficient, lightweight, and energy-efficient. They employ advanced methods, including finite element modeling (FEM), to ensure maximum performance, weight, and efficiency. Additionally, the Cardan shaft has an adjustable length for easy repositioning.
Another popular choice for driveshafts is the Cardan shaft, also known as a driveshaft. The purpose of the driveshaft is to transfer torque from the engine to the wheels. They are typically used in high-performance car engines. Some types are made of brass, iron, or steel and have unique surface designs. Cardan shafts are available in inclined and parallel configurations.
Single Cardan shafts are a common replacement for standard Cardan shafts, but if you are looking for dual Cardan shafts for your vehicle, you will want to choose the 1310 series. This type is great for lifted jeeps and requires a CV-compatible transfer case. Some even require axle spacers. The dual Cardan shafts are also designed for lifts, which means it’s a good choice for raising and lowering jeeps.
air-compressor

universal joint

Cardan joints are a good choice for drive shafts when operating at a constant speed. Their design allows a constant angular velocity ratio between the input and output shafts. Depending on the application, the recommended speed limit may vary depending on the operating angle, transmission power, and application. These recommendations must be based on pressure. The maximum permissible speed of the drive shaft is determined by determining the angular acceleration.
Because gimbal joints don’t require grease, they can last a long time but eventually fail. If they are poorly lubricated or dry, they can cause metal-to-metal contact. The same is true for U-joints that do not have oil filling capability. While they have a long lifespan, it can be difficult to spot warning signs that could indicate impending joint failure. To avoid this, check the drive shaft regularly.
U-joints should not exceed seventy percent of their lateral critical velocity. However, if this speed is exceeded, the part will experience unacceptable vibration, reducing its useful life. To determine the best U-joint for your application, please contact your universal joint supplier. Typically, lower speeds do not require balancing. In these cases, you should consider using a larger pitch diameter to reduce axial force.
To minimize the angular velocity and torque of the output shaft, the two joints must be in phase. Therefore, the output shaft angular displacement does not completely follow the input shaft. Instead, it will lead or lag. Figure 3 illustrates the angular velocity variation and peak displacement lead of the gimbal. The ratios are shown below. The correct torque for this application is 1360 in-Ibs.

Refurbished drive shaft

Refurbished driveshafts are a good choice for a number of reasons. They are cheaper than brand new alternatives and generally just as reliable. Driveshafts are essential to the function of any car, truck, or bus. These parts are made of hollow metal tubes. While this helps reduce weight and expense, it is vulnerable to external influences. If this happens, it may crack or bend. If the shaft suffers this type of damage, it can cause serious damage to the transmission.
A car’s driveshaft is a critical component that transmits torque from the engine to the wheels. A1 Drive Shaft is a global supplier of automotive driveshafts and related components. Their factory has the capability to refurbish and repair almost any make or model of driveshafts. Refurbished driveshafts are available for every make and model of vehicle. They can be found on the market for a variety of vehicles, including passenger cars, trucks, vans, and SUVs.
Unusual noises indicate that your driveshaft needs to be replaced. Worn U-joints and bushings can cause excessive vibration. These components cause wear on other parts of the drivetrain. If you notice any of these symptoms, please take your vehicle to the AAMCO Bay Area Center for a thorough inspection. If you suspect damage to the driveshaft, don’t wait another minute – it can be very dangerous.
air-compressor

The cost of replacing the drive shaft

The cost of replacing a driveshaft varies, but on average, this repair costs between $200 and $1,500. While this price may vary by vehicle, the cost of parts and labor is generally equal. If you do the repair yourself, you should know how much the parts and labor will cost before you start work. Some parts can be more expensive than others, so it’s a good idea to compare the cost of several locations before deciding where to go.
If you notice any of these symptoms, you should seek a repair shop immediately. If you are still not sure if the driveshaft is damaged, do not drive the car any distance until it is repaired. Symptoms to look for include lack of power, difficulty moving the car, squeaking, clanking, or vibrating when the vehicle is moving.
Parts used in drive shafts include center support bearings, slip joints, and U-joints. The price of the driveshaft varies by vehicle and may vary by model of the same year. Also, different types of driveshafts require different repair methods and are much more expensive. Overall, though, a driveshaft replacement costs between $300 and $1,300. The process may take about an hour, depending on the vehicle model.
Several factors can lead to the need to replace the drive shaft, including bearing corrosion, damaged seals, or other components. In some cases, the U-joint indicates that the drive shaft needs to be replaced. Even if the bearings and u-joints are in good condition, they will eventually break and require the replacement of the drive shaft. However, these parts are not cheap, and if a damaged driveshaft is a symptom of a bigger problem, you should take the time to replace the shaft.

China 2020 new big wheel 1200W 1500W 60V shaft drive motor electric 4 wheeler,4 wheel quad bike,farm atv     custom drive shaft	China 2020 new big wheel 1200W 1500W 60V shaft drive motor electric 4 wheeler,4 wheel quad bike,farm atv     custom drive shaft
editor by Cx 2023-05-04

in West Yorkshire United Kingdom sales price shop near me near me shop factory supplier Yx3 Series Ie2 High Effiency 0.18kw~375kw Frame Size 80 90 100 112 132 160 180 200 225 250 280 315 355 AC Electric Motor for Gear Motors manufacturer best Cost Custom Cheap wholesaler

  in West Yorkshire United Kingdom  sales   price   shop   near me   near me shop   factory   supplier Yx3 Series Ie2 High Effiency 0.18kw~375kw Frame Size 80 90 100 112 132 160 180 200 225 250 280 315 355 AC Electric Motor for Gear Motors manufacturer   best   Cost   Custom   Cheap   wholesaler

EPG has established up a complete set of quality administration technique which is provided with sophisticated inspection and test equipment. we source chromed bar and tubes for hydualic and pheumatic cylinders. Our solution assortment also handles locking assemblies (clamping factors/locking device), taper bushes, QD bushes, bolt-on hubs, torque limiters, shaft collars, motor bases and motor slides, chain detachers, chain guides, universal joint, rod ends and yokes.

YX3 CE Approved IEC StXiHu (West EPT) Dis.Hu (West EPT) Dis.rd A few Stage Asynchronous Electric powered Cement Mixer EPT EPT for Industry
———————————————————————————————

Purposes: Can be used in the EPTTs the place steady obligation is required, normal applications like

  • EPTs
  • Fans
  • EPTTs
  • EPT tools
  • Creation business

EPTT Description

  • Body measurements: 63 to 355M/L
  • Rated output: .18 to 375kW
  • Voltage: 380V
  • Frequency: 50Hz or 60Hz
  • Poles: 2, four, 6, eight,10
  • Effectiveness levels: IE2
  • Obligation Cycle: S1
  • Enclosure: IC411 – TEFC
  • Insulation course: F
  • Diploma of safety: IP55/fifty six/sixty five/66
  • Provider Issue: one.
  • Regreasing system: Body 250 and above

Features
Stunning profile, higher performance and strength saving (Stage three of GB18613-2012), lower noise, tiny vibration, reputable operating.

Optional Features
EPT:
Insulation Class:H Layout H
Thermal Protection: PTC Thermistor, EPT or PT100
EPT:
Others mountings
Security Degree:IP56, IP65, IP66
EPT:Lip seal, Oil seal
Space Heater, EPTT shaft ends
Drain Gap

Mounting
Conventional mounting kind and suited body dimension are given in pursuing desk(with quot radic quot)

Body simple sort derived sort
B3 B5 B35 V1 V3 V5 V6 B6 B7 B8 V15 V36 B14 B34 V18
63~112 radic radic radic radic radic radic radic radic radic radic radic radic radic radic radic
132~160 radic radic radic radic radic radic radic radic radic radic radic radic
one hundred eighty~280 radic radic radic radic
315~355 radic radic radic

If there is no other ask for in the orEPTTor settlement, terminal box stXiHu (West EPT) Dis.Hu (West EPT) Dis.rd placement is at the rigEPTT facet of the body data previously mentioned might be modified with no prior recognize.

Web site

Show Area


Item and Technique Certificates

Patents

Honors

Premium Services

EPTT EPTT

EPT EPT Manufacturing Workshop and Flow Chart

Hundreds of Certificates, Honors and much more Company data remember to go to quotABOUT US quot
—————————————————————————————————————————
Welcome to make contact with us immediately…

https://youtu.be/frVvg3yQqNM

WANNAN EPT EPTT EPTS

  in West Yorkshire United Kingdom  sales   price   shop   near me   near me shop   factory   supplier Yx3 Series Ie2 High Effiency 0.18kw~375kw Frame Size 80 90 100 112 132 160 180 200 225 250 280 315 355 AC Electric Motor for Gear Motors manufacturer   best   Cost   Custom   Cheap   wholesaler

  in West Yorkshire United Kingdom  sales   price   shop   near me   near me shop   factory   supplier Yx3 Series Ie2 High Effiency 0.18kw~375kw Frame Size 80 90 100 112 132 160 180 200 225 250 280 315 355 AC Electric Motor for Gear Motors manufacturer   best   Cost   Custom   Cheap   wholesaler

in Kurnool India sales price shop near me near me shop factory supplier YB3 High performance explosion-proof three-phase motor YB3-80M2-2P-1.5HP-1.1KW(0.75KW-315KW manufacturer best Cost Custom Cheap wholesaler

  in Kurnool India  sales   price   shop   near me   near me shop   factory   supplier YB3 High performance explosion-proof three-phase motor YB3-80M2-2P-1.5HP-1.1KW(0.75KW-315KW manufacturer   best   Cost   Custom   Cheap   wholesaler

our goods are offering nicely in the American, European, South American and Asian marketplaces. we have attained the trust of customers throughout the world. We examine every single piece of bearing by ourselves just before shipping and delivery.

Descriptions:
YD series Two pace(modify-pole multi-speed) a few period induction motors have a one winding, via adjust the link of wires, the motor changed to different poles, therefore it runs unEPTTdifferent speed with diverse output EPTT. YD collection motors have heaps of EPTs this kind of as huge beginning torque, superb overall performance, low sound and vibration, substantial dependability, effortless operation and and many others. YD series motors are commonly used in the system which needs stepped pace adjustment, these kinds of as compressors, machining equipments, transportation technique, agricultural system, food processing system etc. We also supply EPTT developed multi-speed motors according to customers’ EPT needs. Functioning situations of YD series motors are the exact same as Y2 sequence a few period asynchronous motors.

  • YD Sequence a few-section Two velocity electric motor is EPTTly created for European market place, whose terminal box is located on the prime of motor housing,can be also found on facet. This motor with a very compact structure and appealing visual appeal. The dimensions and mounting proportions are developed in accordance to the IEC 60034-1 stXiHu (West EPT) Dis.Hu (West EPT) Dis.rd. The motor has some very good characteristics, such as substantial efficiency, energy-conserving, large commencing torque and straightforward routine maintenance.they are primarily utilized for EPTTry and products.this sort of as blower,supporter,pump, design EPTT,transit program,EPTTry tool, EPT EPTTry, foodstuff EPTTry and air compressor.

Technical specs amp Datas:

1.Frame sizes: eighty-200L

two.Rated EPTT: .forty five/.55kw-26/30kw

3. Rated voltage: 220/380V,380/660V,400V,415V,460V or on your request

four. Frequency: 50Hz,

five. Protection class: IP44,IP54,IP55

six.Insulation course: B,F,H

seven.EPTs: forged iron,EPTT

eight..Two Poles Offered: 4/two, six/four, 8/4,8/six

nine Cooling technique: IC411 (overall-enclosed admirer-cooled type)

10.Mounting sorts: B3/B5/B14/B15/B34/B35

11.Working manner: S1

twelve. EPTion: quotstar quot sort for 3kW and downwards, quotEPT quot type for 4kW and upwards

thirteen.Ambient temperature: -fifteen degC lt theta lt 40 degC

fourteen.The altitude need to be reduced than 1,000m previously mentioned the sea amount

Our Solutions:

one. EPTT Manufacturing is offered.

2. EPT for OEM and ODM,OTM remedies

3. a hundred% examined just before cargo

four. Certificate and Promise: ISO 9001 and CE.

five. package: carton,picket situation,plywood circumstance or pallet

six. IE1,IE2,IE3 motors

7. EPT body ousing can be solid iron,or aluminium.

eight. Most affordable price tag

nine.12-18 months Guarantee period of time

10. EPT motors can be made in accordance to customers’ needs

eleven.All copper wire windings

FAQ

A:What is your MOQ of this item ?

B:twenty pcs for each item.

A:What is our lead time ?

B:20-35 days.

A:What is your payment?

B:T/T, L/C at sight, D/P at sight,

A:Can we variety our model on it ?

B:Of course of system.

A:The place is your loading port ?

B:HangEPT port or ZheJiang port.

A:What is your firm’s available creation potential ?

B:About a thousand PCS for every working day.

Ordering info

one.You should point out the motor sort,rated output,rated voltage,rated frequency,synchronous velocity,EPT Mark,mounting variety,rotation course(view from the shaft extension facet)Use of the environment(indoor or exterior)If the consumer havn’t stage out the rotation and setting,normailly we feel is CW roration and employed indoor.

two.when consumer have EPTT requirments,For example:Dispose the stator,bearing explosion proof and bearing temperature sensors,place heater,Plateau use,specical frequency,mounting dimension alter,EPTT output,the user should ,orEPTTcan be verify right after signing the technological arrangement with engneering division .

3.The catalogue is only fpr reference,and there could be variants.

four.This variety of motor can also be made into Variable-Frequency motors,the range of frequency of which is -100HZ,the output and total proportions must be confirm separately.

  in Kurnool India  sales   price   shop   near me   near me shop   factory   supplier YB3 High performance explosion-proof three-phase motor YB3-80M2-2P-1.5HP-1.1KW(0.75KW-315KW manufacturer   best   Cost   Custom   Cheap   wholesaler

  in Kurnool India  sales   price   shop   near me   near me shop   factory   supplier YB3 High performance explosion-proof three-phase motor YB3-80M2-2P-1.5HP-1.1KW(0.75KW-315KW manufacturer   best   Cost   Custom   Cheap   wholesaler

in Khabarovsk Russian Federation sales price shop near me near me shop factory supplier Top Sale Motor Steel Bar Cutting Machine manufacturer best Cost Custom Cheap wholesaler

  in Khabarovsk Russian Federation  sales   price   shop   near me   near me shop   factory   supplier Top Sale Motor Steel Bar Cutting Machine manufacturer   best   Cost   Custom   Cheap   wholesaler

The high specific CNC gear, this kind of as Sluggish-feeding wire-minimize equipment, jig grinding equipment and electric powered discharge machine, guarantees the top high quality precision of mould processing, with the higher productive and environmental defense acid rolling line getting the biggest raw substance converting equipment in the field in china The wildly use of automated milling equipment, large-speed automatic feeding punch, high pace automatic rolling and assembling equipment guarantees the substantial quality and effectiveness of components and chain producing. Sophisticated thermo therapy products, these kinds of as community warmth treatment oven, multi-use thermo therapy oven, and so on. focus in power transmission merchandise, CATV items, mechanical seal, hydraulic and Pheumatic, and advertising merchandise.
GQ40A Rebar Cutting EPTT, is made in accordance to JG/T5085-1996 stXiHu (West EPT) Dis.Hu (West EPT) Dis.rd, is relevant to common carbon metal, Very hot-rolled steel and corrugated rebar in strengthened concrete. It can also lower flat steel, angle metal and sq. metal provided with EPTT blades. GQ40/50/sixty has the subsequent functions:
one. Compact composition, reliable and reliable
2. Good lubricating properties. Undertake shut construction, use EPT Splash lubrication, fill in eight-12kgs oil, the EPTT could operate continually for a lot more than 3 thirty day period (oil degree not lower than the oil calibration, so that make certain the EPTT is in nicely lubrication situation)
three. Lower EPTT use. The EPT makes use of rolling bearing, lower resistance, could preserve one/3 EPTT comparing with other rebar reducing EPTTs

Design GQ40 GQ40 (Round Bar)
Cut Time 32 / Min
Slicing Ability Ub le450Mpa Phi6-40mm
Ub le650Mpa Phi6-32mm
EPTT 3KW-2Poles
Flat Metal 70mm*15mm
Squre Steel 32mm*32mm
Angle Steel 50mm*50mm
Voltage 380V
Excess weight 400kg
Dimension 1250*500*730mm

EPTT Demonstrate

As the EPTT figure displays: EPT one via V-belt EPT the big pulley 2 to make it turn, the even shaft EPT 3 mesh the EPT four, II aXiHu (West EPT) Dis.s even shaft EPT nine mesh the III aXiHu (West EPT) Dis.s EPT 10, III aXiHu (West EPT) Dis.s even shaft EPT five mesh the swimming EPT six, the torque transmitted to crankshaft EPT the connecting rod twelve to press movable knife seat thirteen to lower.

Merchandise EPTT and export
We undertake wood and iron box to pack steel rod cutter EPTT, EPT assure the security and top quality of merchandise, we adopt a number of port, a number of eXiHu (West EPT) Dis.t point.This kind of as ZheJiang , EPTTngdao, ZheJiang and other areas.Merchandise transportation will be more quickly and far more practical.
covered with plastic bag — defend EPTT from h2o.
plastic bag coated with robust water-resistant bag — double defend EPTT from
h2o and surface damage.
resolve the EPTT into Iron shelf — prevent from harm.
carton go over on to the iron shelf — protect the privateness of clients’ goods.
Our EPTT
EPTTXiHu (West EPT) Dis.HU (WEST LAKE) DIS.EPT EPTTry, which is a professional producer of EPTT steel processing EPTTry in EPTT considering that the calendar year of 2000, provided qualified EPTTs for above 40 countries in the globe. The business strives to become the leaEPTTin the EPTT computerized EPTT metal processing sector.
The firm’s top products: steel bar bending EPTT, metal bar bending cEPTTr, , steel cage welding EPTT, steel bar shearing threading manufacturing line, metal bar cutting upsetting threading grinding manufacturing line, EPTT metal mesh welding creation line, steel bar reducing EPTT, steel wire straightening and slicing EPTT and other items.

Certification

Main EPT

Rebar Processing EPTTry (Rebar BenderRebar CutterRebar StraightenerCNC Rebar Stirrup BenderCNC Rebar Shearing LineCage EPT EPTTCNC Rebar Bending CEPTTr)

Our Companies

We supply you with full advisory services and go over the make a difference with you totally in orEPTTto discover the greatest answer. To this stop, you pick the acceptable support modules from our nicely-conceived variety in orEPTTto tailor the service characteristics precisely to your specific needs.
G uumldel deveXiHu (West EPT) Dis.Hu (West EPT) Dis.s, manufactures and assembles around the world in its own factories and has its possess local service teams, which allows us to give fast reaction times in orEPTTto sustain the maXiHu (West EPT) Dis.mum operational availability of your installation

FAQ

Q: What is the producing time and supply time?
A: About ten-fifteen functioning days.
Q: What is actually the MOQ?
A: 5 pcs. For sample buy, one laptop is Ok, there is certainly extra port and shipping and delivery charges.
Q: What’s the departure port?
A: Usually ZheJiang port, HangEPT, EPTTngdao, TianEPTT and other EPTT port is also Okay.
Q: What is the EPTT?
A: Iron Pallet and Polly picket circumstances (no fumigation required)
Q: What is actually the payment phrase?
A: T/T, L/C, DP, West union, PayPal .

  in Khabarovsk Russian Federation  sales   price   shop   near me   near me shop   factory   supplier Top Sale Motor Steel Bar Cutting Machine manufacturer   best   Cost   Custom   Cheap   wholesaler

  in Khabarovsk Russian Federation  sales   price   shop   near me   near me shop   factory   supplier Top Sale Motor Steel Bar Cutting Machine manufacturer   best   Cost   Custom   Cheap   wholesaler

in Amman Jordan sales price shop near me near me shop factory supplier Ye3 Ce CCC Certificated Tefc 0.18~375kw Three Phase Induction AC Electric Marelli Motor En 60034-1 IEC 34-1 for Fan Pump Blower Compressor Ye3-315L2-2 200kw manufacturer best Cost Custom Cheap wholesaler

  in Amman Jordan  sales   price   shop   near me   near me shop   factory   supplier Ye3 Ce CCC Certificated Tefc 0.18~375kw Three Phase Induction AC Electric Marelli Motor En 60034-1 IEC 34-1 for Fan Pump Blower Compressor Ye3-315L2-2 200kw manufacturer   best   Cost   Custom   Cheap   wholesaler

We examine each piece of bearing by ourselves prior to shipping. Having accumulated treasured encounter in cooperating with overseas consumers, Quality and credit history are the bases that make a company alive.

YE3 CE CCC Certificated TEFC .eighteen~375KW A few Section Induction AC Electric powered Marelli EPT EN 60034-1 IEC 34-1 for enthusiast pump blower compressor
———————————————————————————————

Purposes
Excellent for high-accuracy EPTT resources and precision devices whose needs are lower noise and tiny vibration.

EPTT Description

  • Frame sizes: eighty to 355
  • Rated output: .12 to 375kW
  • Voltage: 380V
  • Frequency: 50Hz or sixty Hz
  • Responsibility Cycle: S1
  • Degree of safety: IP55
  • Insulation course: F
  • Effectiveness ranges: IE2 (YZC) / IE3 (YE3ZC)

Attributes
Lower noise, small vibration

Optional Characteristics
EPT:
Insulation Class:H
Thermal Defense: PTC Thermistor, EPT or PT100
EPT:
Others mountings
Security Degree:IP55,fifty six, IP65
EPT:Lip seal, Oil seal
Place Heater
Drain Hole

Circumstance for Use
Altitude not exceeds 1000m over sea degree. The ambient temperature shall no larger than forty ordmC and no reduce than -15 ordmCNo EPTT environmental needs.

Mounting Variety
Standard mounting type and ideal body size are provided in subsequent desk(with quot radic quot)

Frame Simple Variety EPTTived Type
B3 B5 B35 V1 V3 V5 V6 B6 B7 B8 V15 V35 B14 B34 V18
eighty~112 radic radic radic radic radic radic radic radic radic radic radic radic radic radic radic
132~one hundred sixty radic radic radic radic radic radic radic radic radic radic radic radic
180~280 radic radic radic radic
315~355 radic radic radic

If there is no other request in the orEPTTor agreement, terminal box stXiHu (West EPT) Dis.Hu (West EPT) Dis.rd position is at the rigEPTT side of the body info above could be altered with no prior observe.

Web site

Present Area


Certificates

Quality Service

EPTT EPTT

EPT EPT Generation Workshop and Circulation Chart

Certificates and far more Organization details remember to go to quotABOUT US quot
—————————————————————————————————————————
Welcome to speak to us directly…

https://youtu.be/frVvg3yQqNM

WANNAN EPT EPTT EPTS

  in Amman Jordan  sales   price   shop   near me   near me shop   factory   supplier Ye3 Ce CCC Certificated Tefc 0.18~375kw Three Phase Induction AC Electric Marelli Motor En 60034-1 IEC 34-1 for Fan Pump Blower Compressor Ye3-315L2-2 200kw manufacturer   best   Cost   Custom   Cheap   wholesaler

  in Amman Jordan  sales   price   shop   near me   near me shop   factory   supplier Ye3 Ce CCC Certificated Tefc 0.18~375kw Three Phase Induction AC Electric Marelli Motor En 60034-1 IEC 34-1 for Fan Pump Blower Compressor Ye3-315L2-2 200kw manufacturer   best   Cost   Custom   Cheap   wholesaler

in Warri Nigeria sales price shop near me near me shop factory supplier Factory Wholesale Custom Carbon Steel Motor Shafts High Precision Pinion Shaft manufacturer best Cost Custom Cheap wholesaler

  in Warri Nigeria  sales   price   shop   near me   near me shop   factory   supplier Factory Wholesale Custom Carbon Steel Motor Shafts High Precision Pinion Shaft manufacturer   best   Cost   Custom   Cheap   wholesaler

If you need to have any data or samples, you should get in touch with us and you will have our soon reply. We can offer a full-range of electrical power transmission merchandise like chains, sprockets and plate wheels, pulleys, gearboxes, motors, couplings, gears and racks. In 2008, it was awarded with “Countrywide Export Commodity Inspection-cost-free Organization”. Thorough description

Usage For new vitality automobile electrical EPT shaft/EPT motor shaft/EPT rotation shaft
EPT elevate/Military EPTT products/aircraft EPT motor shaft
EPT shaft/EPT shaft/steering shaft/spline shaft/motor shaft/cardan shaft
Pinion shaft/helical EPT/shaft/fleXiHu (West EPT) Dis.ble shaft/counter shaft/Axle shaft
Specification Length:100-500mm,Outside the house Dia.:20-90mm,Spline module:.8-3 or EPTT dimensions
Surface Treament Anodizing/ OXiHu (West EPT) Dis.ding/ Zinc plating/ Nickel plating/ Chrome plating/ Silver plating/ EPT plating/ Imitation EPT plating/ Sand blasted/ Brushed/ Silk EPT/ Passivation/ EPTT coating/ Portray/ Alodine/ Heat therapy/ Teflon and so on.
Tolerance /-.005mm or /- .0002
EPT Stainless Metal,EPTT Metal
We deal with a lot of other kind of resources. Remember to make contact with us if your essential substance is not shown previously mentioned.
Inspecation EPT Coordinate measuring machining/ Projector/ Caliper/ EPTscope/ EPTmeter/ EPT gauge/ Roughness tester/ Gauge block/ Thread gauge and so forth.
EPTT EPTT 100% inspection
EPTT Indeed,all are EPT in accordance clients’ drawings design and style or sample
Our Buyer BYD,EPT,Honda,GAIC Team ,SAIC group, BAIC team,Wide-EPTT,AKEI,Inovance, EPTTeEPT,etc

  in Warri Nigeria  sales   price   shop   near me   near me shop   factory   supplier Factory Wholesale Custom Carbon Steel Motor Shafts High Precision Pinion Shaft manufacturer   best   Cost   Custom   Cheap   wholesaler

  in Warri Nigeria  sales   price   shop   near me   near me shop   factory   supplier Factory Wholesale Custom Carbon Steel Motor Shafts High Precision Pinion Shaft manufacturer   best   Cost   Custom   Cheap   wholesaler